DESIGNING EFFECTIVE TABLES AND GRAPHS

Stephen Few
www.analyticspress.com

Most presentations of quantitative business data are poorly designed – painfully so, often to the point of misinformation. This problem, however, is rarely noticed. We use tables and graphs to communicate quantitative information: the critical numbers that measure the health, identify the opportunities, and anticipate the future of our businesses. Even the best information is useless, however, if its story is poorly told.

This problem exists because few have been trained in table and graph design for effective and efficient communication. Some key lessons for doing better include the following:

• The effective display of quantitative information involves two fundamental challenges: 1) selecting the right medium of display (for example, a table or a graph, and the appropriate kind of either), and 2) designing the individual visual components of the selected medium to display the information and its message as clearly as possible.

• A table works best when:
 ▪ It is used to look up individual values
 ▪ It is used to compare individual values
 ▪ The values must be expressed precisely

• A graph works best when the message is contained in the shape of the data, such as patterns, trends, co-relationships, and exceptions to the norm.

• Meaningful quantitative information always involves relationships. With rare exceptions in business graphs, these relationships always boil down to one or more of the seven relationships described on the next page.

• A common problem with tables and graphs is the excessive presence of visual content that doesn’t represent actual data. Whenever quantitative information is presented, the data itself should stand out clearly, without distraction. This involves eliminating anything that doesn’t represent data, except for visual devices that support the data in a necessary way (for example, axes in a graph), in which case they should be displayed in muted fashion so as to not distract from the data itself.

Available from Analytics Press

Other Complementary References

Contact: Stephen Few, Perceptual Edge, (510) 558-7400, sfew@perceptualedge.com
Seven common quantitative relationships in graphs and how to display them

Copyright © 2004 Stephen Few

Time-Series
Expresses the rise and fall of values through time.
- Use lines to emphasize overall pattern.
- Use bars to emphasize individual values.
- Use points connected by lines to slightly emphasize individual values while still highlighting the overall pattern.
- Always place time on the horizontal axis.

Ranking
Expresses values in order by size.
- Use bars only (horizontal or vertical).
- To highlight high values, sort in descending order.
- To highlight low values, sort in ascending order.

Part-to-Whole
Expresses the portion of each part relative to the whole.
- Use bars only (horizontal or vertical).
- Use stacked bars only when you must display measures of the whole as well as the parts.

Deviation
Expresses how and the degree to which one or more things differ from another.
- Use lines to emphasize the overall pattern only when displaying deviation and time-series relationships together.
- Use points connected by lines to slightly emphasize individual data points while also highlighting the overall pattern when displaying deviation and time-series relationships together.
- Use bars to emphasize individual values, but limit to vertical bars when a time-series relationship is included.
- Always include a reference line to compare the measures of deviation against.

Distribution
Expresses a range of values as well as the shape of the distribution across that range.
- Single distribution:
 - Use vertical bars to emphasize individual values
 - Use lines to emphasize the overall shape.
- Multiples distributions:
 - Use vertical or horizontal bars (a.k.a. range bars or boxes) to encode the full range from the low value to the high value, or some meaningful portion of the range (for example, 90% of the values).
 - Use points or lines together to encode measures of center (for example, the median).

Correlation
Expresses how two paired sets of values vary in relation to one another.
- Use points and a trend line in the form of a scatter plot.

Nominal Comparison
Simply expresses the comparative sizes of multiple related but discrete values in no particular order.
- Use bars only (horizontal or vertical).

www.analyticspress.com